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A generalized master equation for the spin-boson model is proposed, that does not require a
perturbative treatment of the interstate or system-bath couplings. The nonperturbative formulation
is based on the assumption of a decoupling of system and bath density operators, and results in a
generalized memory function, that reduces in the limit of weak system-bath coupling to the standard
result of the perturbative noninteracting-blip approximation. Numerical studies in comparison to
exact path-integral calculations demonstrate that the nonperturbative master equation represents
a clear improvement to perturbation theory as long as the overall coupling is still small enough to
justify the underlying decoupling assumption. Finally, possible generalizations of the method to the
description of a dissipative N-level system and the limitations of the decoupling ansatz are discussed

in some detail.

PACS number(s): 05.30.—d, 03.65.—w

I. INTRODUCTION

The separation of a physical problem into a relevant
part (the “system”) and an irrelevant part (the “bath”)
is an ubiquitous strategy in many areas of physics and
chemistry. The underlying idea is to treat the relevant
dynamics (usually modeled by a one-dimensional reac-
tion coordinate) exactly and approximate the dynamics
of the remaining degrees of freedom in terms of a har-
monic bath that is bilinearly coupled to the system de-
gree of freedom. If applicable, the system-bath concept
therefore allows one to reduce the complexity of a real
physical system considerably. The concept furthermore
suggests a simple approximation to introduce irreversibil-
ity and dissipation into quantum mechanics [1-4]. The
basic assumption usually made is that the bath has so
many degrees of freedom that the reaction of the sys-
tem on the bath can be neglected, i.e., the bath stays in
thermal equilibrium for all times.

One of the simplest and best studied model problems
of quantum-mechanical relaxation dynamics is the dis-
sipative two-level system, often referred to as the spin-
boson problem [4-21]. Although each subproblem (i.e.,
the two-level system and the harmonic bath) is easily
solvable, the dissipative two-level system in general can
only be solved exactly by numerical path-integral evalua-
tion [6-10]. There exists a variety of approximate formu-
lations of the spin-boson problem, however, which treat
either the interstate coupling or the system-bath cou-
pling in a perturbative manner. The first case is often
referred to as the golden rule approximation, which in
particular has proven to be valuable in the field of chem-
ical physics [11,12]. The latter case is often referred to
as the noninteracting-blip approximation (NIBA). The
NIBA has been introduced in a path-integral framework
by Leggett and co-workers [5] and has been found to be
fully equivalent to a second-order perturbative treatment
of general relaxation theory [15]. A further simplification
arises if only the diagonal elements of the reduced den-

1063-651X/95/51(4)/3038(7)/$06.00 51

sity operator (i.e., the populations) are of interest. In
this case a generalized master equation can be derived,
which is an integro-differential equation for the popula-
tions with a non-Markovian memory kernel [14-17]. Dur-
ing the past decade there has been a large amount of lit-
erature, considering, in particular, the numerical imple-
mentation [6-11,13], formal extensions [16-19], and semi-
classical approximations [20,21] to the spin-boson prob-
lem.

In this work we propose a generalized master equation
that does not require a perturbative treatment of the in-
terstate or system-bath couplings. The theory is based
on a decoupling approximation, that is, we assume that
for all times the total density operator can be written as
a product of system density operator and bath density
operator, i.e., the system degrees of freedom are cou-
pled to the bath degrees of freedom in a self-consistent
manner. The nonperturbative formulation results in a
generalized memory function, which reduces to the stan-
dard NIBA result in the limit of weak system-bath cou-
pling. We present computational results for a spin-boson
model with an Ohmic bath, which are compared to exact
path-integral calculations. It is demonstrated that the
nonperturbative master equation represents a clear im-
provement of the NIBA as long as the overall coupling
is still small enough to justify the underlying decoupling
assumption. Finally, we compare the theory to a nonper-
turbative semiclassical approach [20,21] and discuss the
limitations and possible generalizations of the decoupling
ansatz in some detail.

II. THEORETICAL FORMULATION

In its simplest version, the spin-boson problem consists
of a two-level system (characterized by the electronic cou-
pling A) that is linearly coupled to a harmonic bath hg.
To be specific, we will refer to the spin and the boson
variables as electronic and nuclear degrees of freedom,
respectively. Representing the two-level system by the

3038 ©1995 The American Physical Society



51 NONPERTURBATIVE GENERALIZED MASTER EQUATION FOR ... 3039

diabatic electronic basis states |¢1) , |¢2), the spin-boson
Hamiltonian reads

H= %" |or) h (ol + {le1) A (2| + He'},
k=1,2

hk = hg + ZC]'.’E]',
J

ho =) 3w;(p} +23). (1)

J

Here the z; and p; represent the dimensionless coordi-
nates and momenta of the jth oscillator, w; and C; being
the vibrational frequency and the linear coupling con-
stant, respectively. Within the spin-boson model (1) all
properties of the bath can be captured by a single func-
tion called the spectral density

J(w) = g Z C26(w — w;). (2)

In the case of an Ohmic bath, the spectral density takes
the form

J(w) = ;—rawe_“’/“’“, 3)

where o is the dimensionless Kondo parameter charac-
terizing the strength of the system-bath coupling and w,
denotes the cutoff frequency defining the time-scale dis-
tribution of the bath dynamics.

The time-dependent dynamics of the total density
operator p(t) of system and bath is described by the
Liouville-von Neumann equation (A = 1)

ip(t) = [H, p(t)]. (4)

We assume factorizing initial conditions, i.e., at t = 0 the
electronic system is in the |p;) electronic state and the
bath is in thermal equilibrium

p(0) = |¢1) (1| e™PPB /Tre=Phe, (5)

where (3 denotes the inverse temperature 1/kpT and
hp = hi — Oneq Zj Cjz;. Depending on the physical
situation under consideration, the bath is initially in the
equilibrium geometry of the |p;) electronic state (i.e.,
hp = hi, the “tunneling case”) or in the equilibrium
geometry of the uncoupled bath Hamiltonian Hg (i.e.,
hp = hg, the “spectroscopic case”). The latter case re-
sults in a nonequilibrium (neq) initial preparation of the
system and can be thought of as a photoexcitation of the
electron from a neutral electronic state (e.g., |po)) to the
lp1) state.

We wish to obtain a generalized master equation for
time-dependent electronic population

P(t) = Trp {p11(t) — p22(t)}, (6)

where prrr = (pr|plpw) are the electronic matrix ele-
ments of the total density operator p(t). As usual, we
insert the formal solution of (4) for the offdiagonal ele-
ments pgr into the equation of motion for the diagonal
elements pgr [3], thus obtaining the integro-differential

equation

0

t
P(t) = —(24)"Re / dt'TrB{eihﬂt—t’)e—ihz(t—t')

x[p11(t) — Pzz(t’)]}- (7)

Equation (7) is still exact. Representing an opera-
tor equation with respect to the multidimensional boson
field, it is not solvable without some approximation. To
solve Eq. (7), we make a decoupling ansatz and assume
that for all times the total density operator p(t) can be
written as a product of system density operator pg(t)
and bath density operator pp(t)

plt) = ps(t)ps (1), (8a)
ps®) = 3 xa(®)lon) (prrl X (2), (8b)
k,k'=1,2

pB(t) =Y wn|®a(t)) (Ba(t)]. (8¢)

Here the electronic density operator is represented by
two complex numbers x; and x2, the squared moduli of
which represent the population probability in the elec-
tronic state |p1) and |p2), respectively. The bath den-
sity operator is represented in terms of the multidimen-
sional state vectors |®,(t)), where w,, = e~P¢ /Tre Ah5
denote the thermal occupation probabilities of the ini-
tial states |®,(0)) = |n), |n) being the eigenstates of
hp such that hp|n) = €,|n). Note that by virtue of
ansatz (8) the electronic (system) degrees of freedom are
coupled to the nuclear (bath) degrees of freedom in a
self-consistent manner, i.e., (8) can be considered a time-
dependent self-consistent-field (TDSCF) approximation
[22]. The ansatz (8) is somewhat different from common
TDSCF formulations, however, which assume that the
total density operator factorizes in single-mode density
operators [23-27], thus introducing a self-consistent cou-
pling between the individual nuclear degrees of freedom.

Introducing the ansatz (8) into the integro-differential
equation (7), we obtain the generalized master equation

P(t) = —(2A)%Re / " a Kt £)P(H), )

where

K(t,t') =) wn (Ba(t)| 07070 |8, (1))

(10)

represents in general a nonstationary and nonlinear mem-
ory function, accounting for the electronic population dy-
namics of the spin-boson problem to all orders of inter-
state and system-bath couplings.

Before proceeding to the general expression for (10),
it is instructive to consider the limiting case of weak
system-bath coupling. Assuming hg = h;, the latter
approximation directly gives

|®n(8)) = €718 |8 (0)) = e~ |n) (11)



3040 GERHARD STOCK 51

i.e., the resulting memory kernel K(t,t') = Ko(t — t') is
equivalent to a product of autocorrelation functions of
shifted harmonic oscillators [28]

Kot — ) = exp{~Qa(t— ) —iQu(t )},  (12)

where

CZ

Qi(t) = 22 stme (13)
wj
C?

Q2(t) =2 Z z}—; coth(38w;)(1 — coswjt) (14)
i 3

are recognized as the ubiquitous functions from standard
spin-boson theory [5]. Equation (12) coincides exactly
with the NIBA result of Leggett et al. [5], where it is
assumed that the bath density operator stays in ther-
mal equilibrium for all times [i.e., |®,(t)) = |®,(0))].
Employing furthermore the Markov approximation, that
is, assuming that P(t) depends only on its present
value P(t), the integro-differential equation (9) simpli-
fies to a rate equation with the golden rule rate k =
(2A)%Re fooo Ko(t)dt. Although usually derived in the
limit of weak interstate coupling (A/w, < 1), the Golden
Rule approximation therefore can be considered a limit-
ing case of the NIBA.

To evaluate (10) in a nonperturbative manner, let us
consider the equations of motion for the system and bath
density operator, respectively, that result from the ansatz
(8). As every contribution pg(t) |®,(t)) (®n(t)| of p(t)
corresponds to a pure state of the complete system, the
equations of motion for xx and ®,, can directly be taken
from the well-known wave-function TDSCF formalism
[29], yielding

ixk(t) =

(hk) xi(2) + Axw (t) (k' # k), (15)

id,(x,t) = (ho+P ZC’ z;

+2ReAx: (t)x;(t)) ®,(x,t). (16)

It is seen that within the TDSCF approximation the
electronic (system) equations of motion reduce to a cou-
pled two-level system with explicitly time-dependent co-
efficients (hi) = >, wyp (Pn(t)|he|®n(t)). The nuclear
(bath) equation of motion is recognized as the time-
dependent Schrodinger equation for a driven harmonic
oscillator, which has the formal solution

|

K(t,t) = an<¢ (t)

expT{2zZC / d'ra:]('r)}

0 (2)) = expT{—i /ot dr (ho +P(1) Y Cy;
SReA(XG)) f1a0), (1)

where expy denotes the time-ordered exponential.

Inserting (17) into (10) and making use of standard
reordering techniques for boson operators, it is shown in
the Appendix that the generalized memory function (10)
can be evaluated as

K(t,t') = Ko(t — t')Kn(t,t') Kneq(t, t'), (18)
Ku(t,t') = exp{——Zi Z C? Jw; /0 dr [cos wji(t—7)
— cos wj(t'—f)] [1—P(T)] } (19)

Knealt,t)) = exb {i6neq[Q1(8) - @2(t)] } (20)

The generalized memory function K (¢,t') is seen to
factorize into three terms: the stationary perturbative
memory kernel Ko(t —t') given in (12) and the nonsta-
tionary functions Kpi(¢,t') and Kyeq(t,t'). The memory
function Ky;(t,t') describes the nonlinear response of the
system in the case of strong system-bath coupling, i.e., in
perturbation theory we have P(7) = 1 and thus K,;; = 1.
The function K,eq(t,t") accounts for transient dynamics
owing to a nonequilibrium preparation of the system [30],
where the parameter 6,4 represents the initial coordinate
shift of the bath density operator [cf. Eq. (5)].

The generalized memory function (18) represents the
central theoretical result of this work. Note that the only
approximation needed to derive Eq. (18) has been the
decoupling or TDSCF ansatz (8). Although the numer-
ical evaluation of the nonperturbative response is some-
what more involved as in the perturbative case, it is an
easy matter to solve the integro-differential equation (9)
with (18) using, e.g., a standard Runge-Kutta integration
scheme. The straightforward numerical implementation
of the method makes it easy to generalize the approach
to more complex model systems (see below). This sim-
plicity also appears advantageous in comparison to the
somewhat complementary approach of Laird, Budimir,
and Skinner [19], who have given explicit expressions for
the population and dephasing rates for the spin-boson
problem up to fourth order in the system-bath coupling.

Before proceeding with numerical demonstrations and
a further discussion of the nonperturbative method, it
is interesting to note that the memory function (10) has
been evaluated also employing a semiclassical approxi-
mation, which can be written as [21]

<1>n(t')> (21)

——)/dx(O /dp(O w(x(O),p(O))exp{2zZC / dT(L'J(T)} (22)

= K5\t~ 1)

K&i(t,t') Kneq(t,t'),
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where
KNt —t') = exp {—Qa(t —t') —ie (t — ')}, (23)

K1) = exp{2i pILeH [ ,t dtz
X A ’ dt]_ sin[wj(tz - t1)] [1 - P(tl)] }7 (24)

and €, = 23, C7/w? is the reorganization energy. Equa-
tion (21) is still identical to (10), where &;(t) represents
the Heisenberg position operator (see the Appendix).
The semiclassical approximation (22) consists of (i) re-
placing the position operator Z;(t) by the classical tra-
jectory x;(t) and (ii) replacing the quantum-mechanical
trace over the bath by a quasiclassical average over the
initial nuclear conditions x(0), p(0), which are weighted
by the Wigner distribution w(x(0), p(0)). Compared to
the quantum-mechanical expressions (12) and (19), the
semiclassical approximation results in different phase fac-
tors but in the same damping term exp{—Q2(t)}. The
nonlinear function K<i(¢,t') was derived by Vitali and
Grigolini [20], who employed a coordinate transforma-
tion of the bath modes [sometimes referred to as the
(pseudo)polaronic transformation] and neglected a non-
classical driving term of the nuclear motion. Performing
a quantum-mechanical average over the boson field £,
however, they obtained a mixed quantum-classical result
K(t,t') = Ko(t—t')K&i(t,t'), i.e., the perturbative mem-
ory kernel is given by the quantum-mechanical expression
(12), while the nonlinear memory function is given by the
semiclassical expression (24).

III. COMPUTATIONAL RESULTS
AND DISCUSSION

In order to study the capability and accuracy of the
different approximations introduced above, we compare
these methods to exact path-integral calculations that
have been reported recently by Makarov and Makri [9]
and Egger and Mak [10]. We consider three examples of
increasing challenge and focus primarily on the regime of
very low temperature, which is known to represent the
most stringent test for a decoupling-type approximation
(see below).

Let us first consider the case of low system-bath cou-
pling corresponding to a Kondo parameter o = 0.09,
where a perturbative method such as the NIBA should
be a good approximation. Figure 1 shows the time evolu-
tion of the electronic population P(t) for the parameters
A =1, kgT = 0.2A, w. = 2.5A, and dpeq = 1. In the
regime of low coupling and low temperature, the elec-
tronic population undergoes a coherent relaxation, which
is to say that P(t) exhibits damped Rabi oscillations.
As expected, the NIBA calculation (dashed line) repro-
duces the exact path-integral results of Ref. [9] (dotted
line) rather well. The nonperturbative TDSCF calcu-
lation (full line) still represents an improvement to the
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FIG. 1. Electronic population P(t) for weak system-bath
coupling @ = 0.09 and the parameters A = 1, kT = 0.2,
we = 2.5A, and dneq = 1. The TDSCF (full line) and NIBA
(dashed line) results are compared to exact path-integral cal-
culations (dotted line) of Ref. [9].

NIBA results and is virtually quantitative.

Increasing the system-bath coupling to a = 0.5625
and keeping the temperature low (kT = 0.1A), we
obtain a strongly damped (weakly coherent) relaxation
of the electronic population as shown in Fig. 2. Fig-
ure 2(a) again compares the NIBA and TDSCF results
to the exact calculation of Ref. [9]. In this medium cou-
pling case there are already considerable differences be-
tween the two approximations, the nonperturbative re-
sults (full line) being a clear improvement to the per-
turbative results (dashed line). It is interesting to also
compare to the semiclassical approximations introduced
above. Figure 2(b) shows the results for the semiclassi-
cal approximation [Eq. (22)] and the mixed quantum-
classical approximation [Egs. (12) and (24)] of Vitali
and Grigolini [20]. While the semiclassical approxima-
tion (full line) reproduces the reference data fairly well,
the mixed quantum-classical approximation (dashed line)
exhibits a spurious oscillation with the period of the re-
organization energy €., indicating that this combination
of quantum-mechanical perturbative response and semi-
classical nonperturbative response may lead to inconsis-
tencies.

As a last example, Fig. 3 shows a case of very strong
system-bath coupling (@ = 2), which has been studied
recently by Egger and Mak [10]. The parameters are
Oneq =0, we =1, Afw, = 0.8 [Fig. 3(a)] and A/w. = 0.6
[Fig. 3(b)]. While in the case of high temperature [(a)
kT = 4w.] both the NIBA and TDSCF approxima-
tions qualitatively match the exact results, the approx-
imative methods are seen to fail badly in the case of
low temperature [(b) kT = 0.4w.]. (The same holds
for the semiclassical approximations mentioned above,
which give in both cases results similar to the TDSCF ap-
proximation.) The low-temperature results clearly show
that in the regime of very strong system-bath interac-
tion the ubiquitous assumption of a decoupling of system
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and bath is not appropriate. In cases where this under-
lying assumption breaks down completely, perturbative
(including the popular golden rule estimates) as well as
nonperturbative methods therefore become meaningless
after a rather short propagation time. The breakdown of
the decoupling assumption has been found also for model
systems, where the overall system-bath coupling « is not
continuously distributed over many weakly coupled bath
modes, but has been put into a few (> 3) strongly cou-
pled vibrational degrees of freedom [31].

One way to go beyond the limitations of the ansatz
(8) is to employ a semiclassical mean-field approxima-
tion [32-34], which does not require a decoupling ap-
proximation (see also the discussion in [21]). It has been
shown recently that the simple classical-path methodol-
ogy describes surprisingly accurately the ultrafast elec-
tronic and vibrational relaxation dynamics occurring in
the spin-boson problem [21] and in internal conversion
[33] and simple photoisomerization processes [34]. An-
other way, which has quite recently attracted a great deal
of attention [8,13,16-18], is to incorporate all strong cou-
plings and interactions into the system density operator
such that the residual coupling to the bath remains weak

P(t)

() 1 2 3 4
At

Electronic population P(t) for medium sys-
tem-bath coupling a = 0.5625 and the parameters A = 1,
kT = 0.1A, w. = 2.5A, and dneq = 1. (a) shows TDSCF
(full line) and NIBA (dashed line) calculations and (b) com-
pares two different semiclassical approximations to the exact
path-integral calculations (dotted line) of [9].

FIG. 2.
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enough to allow for an approximate treatment. In other
words, the electronic two-level system is replaced by a
vibronic N-level system, representing an electronic two-
state system with a (usually one-dimensional) strongly
coupled system coordinate, the dynamics of which is ac-
counted for without any approximation.

From the structure of the ansatz (8) it is clear that
it is straightforward to generalize the nonperturbative
treatment from a two-level system to an N-level system.
It should be noted, however, that the nonperturbative
approach does not easily generalize to the case of a bi-
ased two-level system, i.e., to an unsymmetric double-
well problem. Because the ansatz of the vibrational wave
function does not depend on the electronic state |pg)
(k = 1,2), the forward rate k. ; is necessarily equal to
the backward rate k1. 2, which is clearly wrong for an un-
symmetrical spin-boson problem. This shortcoming can
be remedied, in principle, by introducing a multiconfig-
uration TDSCF ansatz [25-27] such that the bath den-
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-
\\,.\..’
.2 3
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o 1 2 3
wet
1.0
A (b)
a{
.01 ..-. \\\\\
P(t) 1 . T~
.2
.0 v - -
() 2 4
wct

FIG. 3. Comparison of the electronic populations P(t) as
obtained by exact quantum Monte Carlo simulations [10]
(dotted line) and TDSCF (full line) and NIBA (dashed line)
calculations in the case of very strong system-bath cou-
pling a = 2. (a) shows an example with high temperature
(kBT = 4w.) and (b) shows an example with low tempera-
ture (kT = 0.4w,).
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sity operator by construction depends on the electronic
state |¢x). In perturbation theory this leads, similarly to
the case of the NIBA, to the vibrational wave function

|<I>£lk)(t)> = e that '<I>£P(0)>. Unfortunately, for the mul-

ticonfiguration case we have not succeeded in finding an
easily computable nonperturbative memory function.

IV. CONCLUSIONS

We have given a generalized master equation descrip-
tion for the spin-boson problem, which allows for a non-
perturbative treatment of the interstate and system-bath
couplings. The theory is based on a decoupling (or
TDSCF) ansatz for the total density operator p(t), which
assumes that for all times p(t) can be written as a prod-
uct of the system density operator and the bath density
operator. Within this approximation we have derived a
generalized memory function, which reduces to the stan-
dard NIBA result in the limit of weak system-bath cou-
pling. In a comparison to exact path-integral calcula-
tions in the regime of small to rather strong system-bath
coupling, it has been shown that the nonperturbative ap-
proach represents a clear improvement to the perturba-
tive NIBA approach as long as the overall coupling is
still small enough to justify the underlying decoupling
assumption. We have also compared the theoretical and
computational results to recently developed semiclassical
approximations [20,21]. It has been found that for the
sake of consistency it is necessary to describe both per-
turbative and nonperturbative response either classically

or quantum mechanically, but not in a mixed represen-
tation. Finally, it has been discussed that, similarly to
standard perturbative relaxation theory, it is straightfor-
ward within the nonperturbative formulation to general-
ize from a two-level description to an N-level description.
This strategy allows one to incorporate all strong cou-
plings and interactions into the system density operator
such that the residual coupling to the bath remains weak
enough to allow for an approximate treatment.
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APPENDIX

In this appendix we sketch the derivation of the gen-
eral expression for the memory function Eq. (18). The
basic idea is to change to the interaction representation
that yields a product of exponential functions of the form
exp{ci1(t)b + c2(t)b}, which is readily evaluated using
the Baker-Hausdorff theorem. For the sake of notational
convenience, we will refer to a single nuclear coordinate x
(instead of 37 ;). Let us first consider the case hp = hy

and rewrite the vibrational wave function (17) as

|®n(t)) = expr {——z’/o dr{hy — [1—P(7)]Cz + 2ReAX1(T)x;(T)}} |n),

(A1)

— e—ihitexp, {iC /0 t dT[l—P(T)]z(T)} In) exp {—ZiReA A t dfxl(T)x;(T)} ,

— emiMtexp {iC /O t dT[1—P(T)]x(T)} In) e=iF(®) (A2)

where expy denotes the time-ordered exponential and z(t) = e*itze "t = 1/1/2(e~*!b + e*“*b!) represents the
Heisenberg position operator. In (A1) we have changed to the interaction representation [35] and have used the fact
that xix3 is a c-number term. In (A2) the Magnus formula for the harmonic oscillator has been employed [36].
The real-valued function F(t) containing the x1x} term and the commutator term of the Magnus formula is not of
further interest, as it is canceled out in (10) by the complex conjugated term e*¥(!) stemming from (®,(t)|. Defining

~(t) = iC/V2 fot dre~*T[1— P(7)], we thus obtain for the vibrational wave function

|8 (t)) = e exp{y(t)b — v* (1)1} In) e 7F). (A3)

The remaining propagator terms e¥**t of (10) are transformed into the interaction representation by introducing
the unitary transformation [28]
Ut(t) = exp {a(t)b — a* (t)bT} (A4)

with a(t) = v/2C/w e~*, which satisfies the relation e~*h2t = e~"1tUT(¢)U(0). The insertion of (A3) and (A4) in
(10) yields
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K(t,t') = Z wy, (n] exp{—y(t')b +v*(t')bT} exp {a(t)b — a*(t)b'}

n

x exp {—a(t')b + a*(t

=5n;wn<n

)bt} exp{y(t')b — v*(¢')b"} |n)

exp { [a(t) - a(#)]b - [a(t) - a(t')]*bf}

")

x exp {ilma(t)a* (t')} exp {—2:Imy* (t')[a(t) — a(t')]}, (A5)

where in the second equation the Baker-Hausdorff theorem e

1
A+B — ¢A¢Be—3[4.B] has been employed. Performing

the thermal average [36], the first two exponentials result in the perturbative memory kernel Ko(t —t') of Eq. (12),
while the last exponential directly gives Kp(¢,t’') of Eq. (19).

In the case of a nonstationary initial condition (i.e., hp = hi — 8eqCT), We make the replacement |n) — Ut |n),
where U = exp {JneqC/ V2w b- bT)} represents the coordinate transformation from hp to h;. An analysis entirely
analogous to the above directly leads to the nonequilibrium function Kpeq(t,t').
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